We present a new local entity disambiguation system. The key to our system is a novel approach for learning entity representations. In our approach we learn an entity aware extension of Embedding for Language Model (ELMo) which we call Entity-ELMo (E-ELMo). Given a paragraph containing one or more named entity mentions, each mention is first defined as a function of the entire paragraph (including other mentions), then they predict the referent entities. Utilizing E-ELMo for local entity disambiguation, we outperform all of the state-of-the-art local and global models on the popular benchmarks by improving about 0.5\% on micro average accuracy for AIDA test-b with Yago candidate set. The evaluation setup of the training data and candidate set are the same as our baselines for fair comparison.
翻译:我们提出了一个新的本地实体脱钩系统。我们系统的关键是学习实体代表的新做法。在我们的方法中,我们学习了一个实体了解的语言模式嵌入扩展(ELMO),我们称之为实体-ELMO(E-ELMO ) 。鉴于一个或一个以上名称实体提到的一个段落,每个提及的内容首先被定义为整个段落的功能(包括其它提及),然后他们预测参考实体。利用E-ELMO 来解释地方实体的脱钩,我们通过提高AIDA测试b与Yago候选人的微观平均精确度约0.5 ⁇,我们优于所有最先进的本地和全球通用基准模型。对培训数据和候选人设置的评价与我们进行公平比较的基线相同。