Quantum Error Correction (QEC) is essential for quantum computing to mitigate the effect of errors on qubits, and Surface code (SC) is one of the most promising QEC methods. Decoding SCs is the most computational expensive task in the control device of quantum computers (QCs), and many works focus on accurate decoding algorithms for SCs, including ones with neural networks (NNs). Practical QCs also require low-latency decoding because slow decoding leads to the accumulation of errors on qubits, resulting in logical failures. For QCs with superconducting qubits, a practical decoder must be very power-efficient in addition to high accuracy and low latency. In order to reduce the hardware complexity of QC, we are supposed to decode SCs in a cryogenic environment with a limited power budget, where superconducting qubits operate. In this paper, we propose an NN-based accurate, fast, and low-power decoder capable of decoding SCs and lattice surgery (LS) operations with measurement errors on ancillary qubits. To achieve both accuracy and hardware efficiency of SC decoder, we apply a binarized neural network. We design a neural processing unit (NPU) for the decoder with SFQ-based digital circuits and evaluate it with a SPICE-level simulation. We evaluate the decoder performance by a quantum error simulator for the single logical qubit protection and the minimum operation of LS with code distances up to 13, and it achieves 2.5% and 1.0% accuracy thresholds, respectively.


翻译:量子错误校正(QEC)对于量子计算减轻误差对qubits的影响至关重要,而水面代码(SC)则是最有希望的QEC方法之一。在量子计算机(QCs)的控制设备中,解析SC是计算成本最高的任务,许多工作的重点是对SC的精确解码算法,包括神经网络(NNS)的算法。实用的QC还需要低时间解码,因为缓慢解码导致qubits的误差积累,从而导致逻辑故障。对于具有超导水平的QCs来说,一个实际解码码器必须是高精度和低读度的QEC方法之一。为了降低QC的硬件复杂性,我们应该在低温环境中解码计算SCs,包括神经网络(NNNCB)运行超导管。我们提出一个基于NW的准确、快速和低功率解码解码的Qqubitralal,一个用于Scial-ral-ral-ral-deal-deal-deal-deal-deal-deal liver Serviews,我们用Silal-ral-ral-ral-ral-ral-s 和制算算的Sildal-deal-deal-deal-deal-deal-to 和制算算算算的操作,我们使用一个SLLLLLLSBral-ral-ral-和制程和制程的操作,我们SD-ral-cal-和制程的SD-cal-cal-cal-ral-ral-cal-cal-li和制程操作,我们的SD-cal-cal-cal-和制程操作,我们的操作的操作的操作的操作的操作的操作的操作的操作,我们的操作,我们的SLLLLLLLLLLLSFD-ral-ral-ral-ral-ral-ral-ral-li-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员