Channel capacities quantify the optimal rates of sending information reliably over noisy channels. Usually, the study of capacities assumes that the circuits which sender and receiver use for encoding and decoding consist of perfectly noiseless gates. In the case of communication over quantum channels, however, this assumption is widely believed to be unrealistic, even in the long-term, due to the fragility of quantum information, which is affected by the process of decoherence. Christandl and M\"uller-Hermes have therefore initiated the study of fault-tolerant channel coding for quantum channels, i.e. coding schemes where encoder and decoder circuits are affected by noise, and have used techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario. Here, we extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero. A main tool, which might be of independent interest, is the introduction of fault-tolerant entanglement distillation. We furthermore focus on the modularity of the techniques used, so that they can be easily adopted in other fault-tolerant communication scenarios.
翻译:通常,能力研究假定发送者和接收者用于编码和解码的电路由完全无噪音的门组成。但是,就量子频道的通信而言,这一假设被广泛认为是不切实际的,即使从长远来看,因为量子信息的脆弱性,受脱节过程的影响。 Christandl 和 M\'uller-Hermes因此开始研究量子频道的防故障通道编码,即受噪音影响的编码和分解电路的编码方案,并使用过敏量计算技术来建立用于发送这种情景中古典和量子信息的编码。我们在这里将这些方法扩大到纠结辅助通信的情况,特别是证明容错能力在门误差接近零时接近通常的能力。一个可能具有独立兴趣的主要工具,是引入过错分解调和分解的电路。我们进一步关注在这种情景中所使用的方法的组合,这样就可以很容易地采用其他不折叠式通信。