Contrastive learning usually compares one positive anchor sample with lots of negative samples to perform Self-Supervised Learning (SSL). Alternatively, non-contrastive learning, as exemplified by methods like BYOL, SimSiam, and Barlow Twins, accomplishes SSL without the explicit use of negative samples. Inspired by the existing analysis for contrastive learning, we provide a reproducing kernel Hilbert space (RKHS) understanding of many existing non-contrastive learning methods. Subsequently, we propose a novel loss function, Kernel-SSL, which directly optimizes the mean embedding and the covariance operator within the RKHS. In experiments, our method Kernel-SSL outperforms state-of-the-art methods by a large margin on ImageNet datasets under the linear evaluation settings. Specifically, when performing 100 epochs pre-training, our method outperforms SimCLR by 4.6%.
翻译:暂无翻译