We propose an online parametric estimation method of stochastic differential equations with discrete observations and misspecified modelling based on online gradient descent. Our study provides uniform upper bounds for the risks of the estimators over a family of stochastic differential equations. The derivation of the bounds involves three underlying theoretical results: the analysis of the stochastic mirror descent algorithm based on dependent and biased subgradients, the simultaneous exponential ergodicity of classes of diffusion processes, and the proposal of loss functions whose approximated stochastic subgradients are dependent only on the known model and observations.
翻译:我们建议对随机差分方程式进行在线参数估计方法,以离散观测和基于在线梯度下降的错误定型为基础,我们的研究为估计者对随机差分方程家族的风险提供了统一的上限。这些界限的推导涉及三个基本理论结果:基于依赖性和偏差子梯度的随机镜反射后位算法分析、扩散过程各类别同时发生的指数异变,以及损失功能建议,其近似随机差次梯度仅取决于已知模型和观察。