We consider discrete-time parametric population-size-dependent branching processes (PSDBPs) with almost sure extinction and propose a new class of weighted least-squares estimators based on a single trajectory of population size counts. We prove that, conditional on non-extinction up to a finite time $n$, our estimators are consistent and asymptotic normal as $n\to\infty$. We pay particular attention to estimating the carrying capacity of a population. Our estimators are the first conditionally consistent estimators for PSDBPs, and more generally, for Markov models for populations with a carrying capacity. Through simulated examples, we demonstrate that our estimators outperform other least squares estimators for PSDBPs in a variety of settings. Finally, we apply our methods to estimate the carrying capacity of the endangered Chatham Island black robin population.
翻译:我们认为离散时间的参数人口大小依赖的支流过程(PSDBPs)几乎可以肯定地消失,并根据人口规模计数的单一轨迹提出新的一类加权最低比例估测器。我们证明,以不延伸至一定时间为条件,我们的估测器是一贯和无症状的正常的,以美元为单位。我们特别注意估计人口的承载能力。我们的估测器是第一个有条件地连续估算PSBPs的估测器,更一般地说,是具有承载能力的人口的Markov模型的估测器。我们通过模拟实例,证明我们的估测器在各种环境中比其他最不固定的方位估量器要强。最后,我们运用我们的方法来估计濒危的查塔姆岛黑盗人口的承载能力。