Most models in machine learning contain at least one hyperparameter to control for model complexity. Choosing an appropriate set of hyperparameters is both crucial in terms of model accuracy and computationally challenging. In this work we propose an algorithm for the optimization of continuous hyperparameters using inexact gradient information. An advantage of this method is that hyperparameters can be updated before model parameters have fully converged. We also give sufficient conditions for the global convergence of this method, based on regularity conditions of the involved functions and summability of errors. Finally, we validate the empirical performance of this method on the estimation of regularization constants of L2-regularized logistic regression and kernel Ridge regression. Empirical benchmarks indicate that our approach is highly competitive with respect to state of the art methods.
翻译:机器学习中的大多数模型至少包含一个用于控制模型复杂性的超参数。选择一套适当的超参数对于模型准确性和计算具有挑战性都至关重要。在这项工作中,我们提出了使用不精确的梯度信息优化连续超参数的算法。这种方法的一个优点是,在模型参数完全趋同之前可以更新超参数。我们还根据所涉功能的正常性条件和误差的可比较性,为这一方法的全球趋同提供了充分的条件。最后,我们验证了这一方法在L2正规化物流回归和内核脊脊回归的正规常数估计方面的实验性表现。 经验性基准表明,我们的方法对于艺术方法的状况具有高度竞争力。