In this paper, we consider distributed optimization problems where $n$ agents, each possessing a local cost function, collaboratively minimize the average of the local cost functions over a connected network. To solve the problem, we propose a distributed random reshuffling (D-RR) algorithm that invokes the random reshuffling (RR) update in each agent. We show that D-RR inherits favorable characteristics of RR for both smooth strongly convex and smooth nonconvex objective functions. In particular, for smooth strongly convex objective functions, D-RR achieves $\mathcal{O}(1/T^2)$ rate of convergence (where $T$ counts epoch number) in terms of the squared distance between the iterate and the global minimizer. When the objective function is assumed to be smooth nonconvex, we show that D-RR drives the squared norm of gradient to $0$ at a rate of $\mathcal{O}(1/T^{2/3})$. These convergence results match those of centralized RR (up to constant factors) and outperform the distributed stochastic gradient descent (DSGD) algorithm if we run a relatively large number of epochs. Finally, we conduct a set of numerical experiments to illustrate the efficiency of the proposed D-RR method on both strongly convex and nonconvex distributed optimization problems.
翻译:在本文中,我们考虑分配优化问题,即美元代理商,每个代理商均拥有当地成本功能,协作将连接网络中当地成本功能的平均值降至最小。为了解决问题,我们建议采用分散随机重整算法,在每个代理商中援引随机重整更新。我们表明,D-RR将RR的有利特性用于顺畅的强电流和顺畅的非电流目标功能。特别是,为了顺畅的顺畅的 convex目标功能,D-RR达到$\mathcal{O}(1/T ⁇ 2)的汇合率($T$计数数),以迭代与全球最小化器之间的平方位距离计算(D-RR)的切数。当目标函数被假定为平滑的非电流式更新时,我们显示,D-RR将平方标准按$mathcal{O}(1/T ⁇ 2/3}计算。这些趋同结果与中央RRR(直到恒定因素)的汇率一致,并超越了已分布的Sqlassimal-Agal-romagraphal degraphal degal-romax(如果我们设定了一个大规模的缩算算方法,则我们将一个不大型的缩成的缩成的缩缩成的缩成的缩成的缩式方法)。