This paper proposes a non-centered parameterization based infinite-dimensional mean-field variational inference (NCP-iMFVI) approach for solving the hierarchical Bayesian inverse problems. This method can generate available estimates from the approximated posterior distribution efficiently. To avoid the mutually singular obstacle that occurred in the infinite-dimensional hierarchical approach, we propose a rigorous theory of the non-centered variational Bayesian approach. Since the non-centered parameterization weakens the connection between the parameter and the hyper-parameter, we can introduce the hyper-parameter to all terms of the eigendecomposition of the prior covariance operator. We also show the relationships between the NCP-iMFVI and infinite-dimensional hierarchical approaches with centered parameterization. The proposed algorithm is applied to three inverse problems governed by the simple smooth equation, the Helmholtz equation, and the steady-state Darcy flow equation. Numerical results confirm our theoretical findings, illustrate the efficiency of solving the iMFVI problem formulated by large-scale linear and nonlinear statistical inverse problems, and verify the mesh-independent property.
翻译:本文提出一种基于无限维度平均场变异推断法的非中心参数化方法,以解决贝叶斯人等级反向问题。 这种方法可以有效地从近似后部分布中得出可用的估计数。 为了避免在无限维度分级法中出现的相互独特的障碍, 我们提出一个非中心偏差贝叶斯人法的严格理论。 由于非中心参数化会削弱参数和超参数之间的联系, 我们可以将超参数化到先前共变操作器的异位化的所有条件中。 我们还可以展示NCP- iMFVI与以中心参数化为主的无限维度等级法之间的关系。 提议的算法适用于由简单平坦方程式、 Helmholtz 方程式和稳定状态的达西流方程式所支配的三个反向问题。 数字结果证实了我们的理论结论, 说明用大规模线性和非线性统计反向问题来解决iMFVI问题的效率, 并核实中位独立的属性。