Automated machine learning (AutoML) is envisioned to make ML techniques accessible to ordinary users. Recent work has investigated the role of humans in enhancing AutoML functionality throughout a standard ML workflow. However, it is also critical to understand how users adopt existing AutoML solutions in complex, real-world settings from a holistic perspective. To fill this gap, this study conducted semi-structured interviews of AutoML users (N = 19) focusing on understanding (1) the limitations of AutoML encountered by users in their real-world practices, (2) the strategies users adopt to cope with such limitations, and (3) how the limitations and workarounds impact their use of AutoML. Our findings reveal that users actively exercise user agency to overcome three major challenges arising from customizability, transparency, and privacy. Furthermore, users make cautious decisions about whether and how to apply AutoML on a case-by-case basis. Finally, we derive design implications for developing future AutoML solutions.
翻译:自动化机器学习(Automal)的构想是使普通用户能够获得ML技术;最近的工作调查了人类在整个标准ML工作流程中提高自动ML功能的作用;然而,了解用户如何从整体角度在复杂、现实世界环境中采用现有的自动ML解决方案也至关重要;为填补这一空白,这项研究对自动ML用户进行了半结构性访谈(N=19),重点是了解:(1) 用户在现实世界做法中遇到的自动ML限制;(2) 用户为应对这些限制而采用的战略,以及(3) 限制和变通办法如何影响他们使用AUML。我们的调查结果显示,用户积极运用用户机构,以克服因可定制性、透明度和隐私而产生的三大挑战;此外,用户对是否和如何在个案基础上应用自动MLL(Auto)进行谨慎决定。最后,我们为今后开发自动ML解决方案提出了设计方面的影响。