Coherent filaments at the ocean surface often appear to be transient watermass boundaries, where currents converge, surfactants accumulate, and frontal structure at depth can possibly delineate enhanced biological activity in the upper water column. Spaceborne synthetic aperture radar (SAR) permits filaments to be observed at O[1-km] resolution, but extensive coherent structures are more apparent in weaker winds. A wind speed adjustment is proposed for filaments (i.e., contiguous SAR contrasts) of at least 10 km in length. Measures of dependence (distance correlation and the linear and nonlinear components of Pearson correlation) are examined to identify a broad peak in the relationship between filament contrast and weak or moderate values of surface wind speed, where a variable wind speed exponent is employed to maximize these measures. Three locations of recent North Atlantic right whale (Eubalaena glacialis) sightings in the Gulf of St. Lawrence are sampled between 2008 and 2020 by 324 Radarsat-2 SAR scenes and 10-m wind speed from the ERA5 reanalysis. The inverse relationship between SAR contrast magnitude and wind speed is quantified, and a reduced correlation is obtained for all three domains when SAR contrast is weighted by wind speed to the power of 0.8. A more uniform emphasis on ocean surface structure within a SAR scene, or across multiple scenes, can thus be considered in the search for prey aggregations of the North Atlantic right whale.


翻译:海洋表面的焦线丝往往看起来是短暂的水体边界,海流聚集、表面活性剂积累和深度的前方结构可能划定上水柱生物活动的增强。空间合成孔径雷达(SAR)允许在O[1-km]分辨率上观测丝状,但在较弱的风中则更加明显。建议对至少10公里长的丝状(即毗连的SAR对比)进行风速调整。对依赖度的测量(距离相关性以及Pearson相关性的线性和非线性组成部分)进行检查,以确定在丝状对比与地表风速的微弱或中值之间的关系上层风速度之间的一个大峰值。在O[1-km]分辨率上,空间合成孔径雷达雷达雷达雷达雷达雷达雷达(即毗连连的合成孔径雷达对比)显示至少10公里长的丝状线状(即毗连的合成孔径雷达)的风速调整。研究发现,对于海面速度的反比关系在平面的海面结构上,可以进行定量分析,在海面上,对海面的海面进行对比度和风力速度进行定量分析,因此,可以对海面的海面进行定量分析,对地平面进行对比,对准,对海面的海面的海面的海面的海面的海面的比度和海面均度可以进行定量分析。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Differentially Private Synthetic Control
Arxiv
0+阅读 · 2023年3月24日
Arxiv
19+阅读 · 2022年7月29日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员