We formulate a stochastic process, FiLex, as a mathematical model of lexicon entropy in deep learning-based emergent language systems. Defining a model mathematically allows it to generate clear predictions which can be directly and decisively tested. We empirically verify across four different environments that FiLex predicts the correct correlation between hyperparameters (training steps, lexicon size, learning rate, rollout buffer size, and Gumbel-Softmax temperature) and the emergent language's entropy in 20 out of 20 environment-hyperparameter combinations. Furthermore, our experiments reveal that different environments show diverse relationships between their hyperparameters and entropy which demonstrates the need for a model which can make well-defined predictions at a precise level of granularity.
翻译:我们提出了一种随机过程FiLex,作为深度学习新兴语言系统中词汇熵的数学模型。定义一个数学模型可以产生明确的预测,这些预测可以直接和明确地进行测试。我们在四种不同的环境中进行实验证明,FiLex能够预测20种环境-超参数组合中20种正确的超参数与新兴语言熵之间的相关性。此外,我们的实验还发现,不同环境之间的超参数与熵之间的关系各有不同,这展示了一种在精确的粒度水平上能够做出明确定义的预测的模型的必要性。