We propose a new model-based algorithm solving the inverse rig problem in facial animation retargeting, exhibiting higher accuracy of the fit and sparser, more interpretable weight vector compared to SOTA. The proposed method targets a specific subdomain of human face animation - highly-realistic blendshape models used in the production of movies and video games. In this paper, we formulate an optimization problem that takes into account all the requirements of targeted models. Our objective goes beyond a linear blendshape model and employs the quadratic corrective terms necessary for correctly fitting fine details of the mesh. We show that the solution to the proposed problem yields highly accurate mesh reconstruction even when general-purpose solvers, like SQP, are used. The results obtained using SQP are highly accurate in the mesh space but do not exhibit favorable qualities in terms of weight sparsity and smoothness, and for this reason, we further propose a novel algorithm relying on a MM technique. The algorithm is specifically suited for solving the proposed objective, yielding a high-accuracy mesh fit while respecting the constraints and producing a sparse and smooth set of weights easy to manipulate and interpret by artists. Our algorithm is benchmarked with SOTA approaches, and shows an overall superiority of the results, yielding a smooth animation reconstruction with a relative improvement up to 45 percent in root mean squared mesh error while keeping the cardinality comparable with benchmark methods. This paper gives a comprehensive set of evaluation metrics that cover different aspects of the solution, including mesh accuracy, sparsity of the weights, and smoothness of the animation curves, as well as the appearance of the produced animation, which human experts evaluated.


翻译:我们提出了一种新的基于模型的算法用于解决面部动画重定位中的反向绑定问题,相对于最先进的技术,该方法展现出更高精度的拟合和更短的、更具可解释性的权重向量。提出的方法针对人脸动画的特定子领域,即在电影和视频游戏制作中使用的高度真实的混合形变模型。在本文中,我们制定了一个优化问题,考虑了所有目标模型的要求。我们的目标不仅适用于线性混合形变模型,并使用了正确拟合网格细节的二次校正项。我们证明,即使使用通用求解器(如SQP),我们提出的问题的解也可以产生高度精确的网格重构结果。虽然使用SQP获得的结果在网格空间中非常准确,但在权重稀疏性和平滑性方面缺乏优势。因此,我们进一步提出了一种基于MM技术的新算法。该算法特别适合解决提出的目标,产生高精度的网格拟合并遵守约束条件,同时产生了一组易于操纵和解释的稀疏平滑权重。我们的算法与基准方法进行了基准测试,展示了结果的全面优越性,产生了平滑的动画重构,相对于基准方法,在保持基数相当的情况下,根均方网格误差的相对改善达到了45%。本文提供了一组全面的评估度量标准,涵盖了解决方案的不同方面,包括网格精度、权重的稀疏性和动画曲线的平滑性,以及所产生动画的外观,这些都被人类专家评估过。

0
下载
关闭预览

相关内容

7 Papers & Radios | IJCAI 2022杰出论文;苹果2D GAN转3D
机器之心
0+阅读 · 2022年7月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
7 Papers & Radios | IJCAI 2022杰出论文;苹果2D GAN转3D
机器之心
0+阅读 · 2022年7月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员