We derive the asymptotic rate of decay to zero of the tail dependence of the bivariate skew Variance Gamma (VG) distribution under the equal-skewness condition, as an explicit regularly varying function. Our development is in terms of a slightly more general bivariate skew Generalized Hyperbolic (GH) distribution. Our initial reduction of the bivariate problem to a univariate one is motivated by our earlier study of tail dependence rate for the bivariate skew normal distribution
翻译:我们得出两差差差差差差 Gamma (VG) 分布在等休状态下的尾部依赖性零的衰减速率,这是一种明确、经常不同的功能。我们的发展是略微笼统的两差差差差差差一般超曲(GH)分布。我们最初将两差问题减为单差问题,是因为我们早先对两差差差正常分布的尾依赖率的研究。