It is well known that the Laplace-Stieltjes transform of a nonnegative random variable (or random vector) uniquely determines its distribution function. We extend this uniqueness theorem by using the Muntz-Szasz Theorem and the identity for the Laplace-Stieltjes and the Laplace-Carson transforms of a distribution function. The latter appears for the first time to the best of our knowledge. In particular, if X and Y are two nonnegative random variables with joint distribution H, then H can be characterized by a suitable set of countably many values of its bivariate Laplace-Stieltjes transform. The general high-dimensional case is also investigated. Besides, Lerch's uniqueness theorem for conventional Laplace transforms is extended as well. The identity can be used to simplify the calculation of Laplace-Stieltjes transforms when the underlying distributions have singular parts. Finally, some examples are given to illustrate the characterization results via the uniqueness theorem.
翻译:众所周知, Laplace- Stieltjes 是一个非阴性随机变量( 或随机矢量) 的变换决定了其分布功能。 我们使用 Muntz- Szasz 理论以及 Laplace- Stieltjes 和 Laplace- Carson 函数的特性扩展了这一独特性理论。 后一种变换首次出现在我们所知的最佳位置上。 特别是, 如果 X 和 Y 是两个具有联合分布 H 的非阴性随机变量, 那么H 可以用一套合适的可计算到的二维性 Laplace- Stieltjes 变换的多数值来描述。 此外, 普通高维案例也得到了调查。 此外, Lechch 的常规 Laplace 变换的独有性理论也得到了扩展。 身份可以用来简化在基础分布有独一部分时对 Laplace- Stieltjes 变换的计算。 最后, 提供了一些例子, 来说明通过独特性神体来说明定性结果。