We study the posterior contraction rates of a Bayesian method with Gaussian process priors in nonparametric regression and its plug-in property for differential operators. For a general class of kernels, we establish convergence rates of the posterior measure of the regression function and its derivatives, which are both minimax optimal up to a logarithmic factor for functions in certain classes. Our calculation shows that the rate-optimal estimation of the regression function and its derivatives share the same choice of hyperparameter, indicating that the Bayes procedure remarkably adapts to the order of derivatives and enjoys a generalized plug-in property that extends real-valued functionals to function-valued functionals. This leads to a practically simple method for estimating the regression function and its derivatives, whose finite sample performance is assessed using simulations. Our proof shows that, under certain conditions, to any convergence rate of Bayes estimators there corresponds the same convergence rate of the posterior distributions (i.e., posterior contraction rate), and vice versa. This equivalence holds for a general class of Gaussian processes and covers the regression function and its derivative functionals, under both the $L_2$ and $L_{\infty}$ norms. In addition to connecting these two fundamental large sample properties in Bayesian and non-Bayesian regimes, such equivalence enables a new routine to establish posterior contraction rates by calculating convergence rates of nonparametric point estimators. At the core of our argument is an operator-theoretic framework for kernel ridge regression and equivalent kernel techniques. We derive a range of sharp non-asymptotic bounds that are pivotal in establishing convergence rates of nonparametric point estimators and the equivalence theory, which may be of independent interest.


翻译:我们用 Gaussia 进程来研究一种巴伊萨方法的后向收缩率, 高斯进程在非参数回归和对差操作员的插座属性中先行进行。 对于一个普通的内核类别, 我们为回归函数及其衍生物的后向量测量量确定一个简单的方法, 这些后向量的测算率与某些类别函数的对数性因子最优化。 我们的计算表明, 对回归函数及其衍生物的速率最优化估计与超参数相同, 表明贝亚程序明显地适应衍生物的顺序, 并拥有一个将实际价值功能扩展到函数估值函数函数函数功能的通用内插件属性。 我们的证据表明, 在某些条件下, 巴伊斯测算器的任何趋同率与后向值分布的趋同率( e., 后向收缩率框架) 和反向。 对于一个普通的加码, 将实际值功能功能功能的内值功能性测算, 其有限的样品性性性性性性性性功能性性性性能, 在某些条件下, 使基底值的比值的基值值值值的基值值的基值比值的基值比值的基值的基值与基值与基值比值与基值与基值的基值的基值与基值比值与基值与基值与基值的比值值值值值值值值与基值比值与基值值值的比值的比值与基值与基值与基值与基值与基值与基值的比值的比值与基值与基值与基值与基值比值比值比值比值的比值的比值的比值比值比值比值比值与基值比值比值的比值比值比值比值比值比值比值比。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员