The present article derives the minimal number $N$ of observations needed to consider a Bayesian posterior distribution as Gaussian. Two examples are presented. Within one of them, a chi-squared distribution, the observable $x$ as well as the parameter $\xi$ are defined all over the real axis, in the other one, the binomial distribution, the observable $x$ is an entire number while the parameter $\xi$ is defined on a finite interval of the real axis. The required minimal $N$ is high in the first case and low for the binomial model. In both cases the precise definition of the measure $\mu$ on the scale of $\xi$ is crucial.
翻译:本条得出了将巴耶西亚后方分布作为高山所需的最低观测次数(n$),列举了两个例子,其中一是基平面分布,观察到的美元和参数($x美元)在实际轴上全部定义,另一是二元分布,观察到的美元是整个数字,而参数($x美元)是在实际轴的有限间隔下定义的,第一个是最低值(n),第二个是二元模式,最低值(n)高,最低值低。在这两种情况下,按美元比值计算,精确界定美元比值($x1美元)的计量数额(munu美元)至关重要。