Meta-learning has proven to be successful for few-shot learning across the regression, classification, and reinforcement learning paradigms. Recent approaches have adopted Bayesian interpretations to improve gradient-based meta-learners by quantifying the uncertainty of the post-adaptation estimates. Most of these works almost completely ignore the latent relationship between the covariate distribution $(p(x))$ of a task and the corresponding conditional distribution $p(y|x)$. In this paper, we identify the need to explicitly model the meta-distribution over the task covariates in a hierarchical Bayesian framework. We begin by introducing a graphical model that leverages the samples from the marginal $p(x)$ to better infer the posterior over the optimal parameters of the conditional distribution $(p(y|x))$ for each task. Based on this model we propose a computationally feasible meta-learning algorithm by introducing meaningful relaxations in our final objective. We demonstrate the gains of our algorithm over initialization based meta-learning baselines on popular classification benchmarks. Finally, to understand the potential benefit of modeling task covariates we further evaluate our method on a synthetic regression dataset.


翻译:在回归、分类和强化学习范式中,模拟学习证明是成功的。最近一些方法采用了贝叶斯解释法,通过量化适应后估算的不确定性来改进梯度基元清除器。大多数这些方法几乎完全忽略了一项任务的共变分配$(p(x))与相应的有条件分配$p(y ⁇ x)之间的潜在关系。在本文件中,我们确定有必要明确模拟贝叶西亚等级框架中任务共变式的元分配。我们首先采用一个图形模型,利用边际的美元(x)样本来更好地推算每项任务有条件分配$(p(y ⁇ x)的最佳参数。根据这个模型,我们提出一个可行的元学习算法,在最终目标中引入有意义的放松。我们证明我们的算法比基于大众分类基准的元学习基线初始化的元化计算得益。最后,我们进一步评估了合成回归数据集方法的模型计算方法的潜在好处。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
84+阅读 · 2020年6月9日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2019年4月19日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员