Encoder-decoder models have been widely used in RGBD semantic segmentation, and most of them are designed via a two-stream network. In general, jointly reasoning the color and geometric information from RGBD is beneficial for semantic segmentation. However, most existing approaches fail to comprehensively utilize multimodal information in both the encoder and decoder. In this paper, we propose a novel attention-based dual supervised decoder for RGBD semantic segmentation. In the encoder, we design a simple yet effective attention-based multimodal fusion module to extract and fuse deeply multi-level paired complementary information. To learn more robust deep representations and rich multi-modal information, we introduce a dual-branch decoder to effectively leverage the correlations and complementary cues of different tasks. Extensive experiments on NYUDv2 and SUN-RGBD datasets demonstrate that our method achieves superior performance against the state-of-the-art methods.


翻译:在 RGBD 语义分解中广泛使用了编码器脱coder 模型,其中多数是通过双流网络设计的,一般来说,共同推理 RGBD 的颜色和几何信息有利于语义分解,但是,大多数现有方法未能在编码器和解码器中全面利用多式联运信息。在本文件中,我们提议为RGBD 语义分解设计一个新的关注基双重监督解码器。在编码器中,我们设计了一个简单而有效的关注基多层次补充信息模块,以提取和整合深度多层次的对称补充信息。为学习更强有力的深度表达和丰富的多模式信息,我们引入了双管解码器,以有效地利用不同任务的相关性和互补线索。关于NUDUDv2 和 SUN-RGBD 数据集的广泛实验表明,我们的方法与最先进的方法相比,其性能更高。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员