In a 1989 paper titled "shortest paths without a map", Papadimitriou and Yannakakis introduced an online model of searching in a weighted layered graph for a target node, while attempting to minimize the total length of the path traversed by the searcher. This problem, later called layered graph traversal, is parametrized by the maximum cardinality $k$ of a layer of the input graph. It is an online setting for dynamic programming, and it is known to be a rather general and fundamental model of online computing, which includes as special cases other acclaimed models. The deterministic competitive ratio for this problem was soon discovered to be exponential in $k$, and it is now nearly resolved: it lies between $\Omega(2^k)$ and $O(k2^k)$. Regarding the randomized competitive ratio, in 1993 Ramesh proved, surprisingly, that this ratio has to be at least $\Omega(k^2 / \log^{1+\epsilon} k)$ (for any constant $\epsilon > 0$). In the same paper, Ramesh also gave an $O(k^{13})$-competitive randomized online algorithm. Since 1993, no progress has been reported on the randomized competitive ratio of layered graph traversal. In this work we show how to apply the mirror descent framework on a carefully selected evolving metric space, and obtain an $O(k^2)$-competitive randomized online algorithm, nearly matching the known lower bound on the randomized competitive ratio.


翻译:在1989年的一篇题为“没有地图的浅色路径”的论文中,Papadimictriou和Yannakakis推出了一个在线模型,在加权层图中搜索一个目标节点,同时试图将搜索者所穿越的路径的总长度降到最低。这个问题后来被称为分层图的曲折,被输入图一层的最大基数$k美元所蒙上。这是一个动态编程的在线设置,众所周知,这是一个相当一般和基本的在线计算模型,其中包括其他获称的模型的特殊案例。这个问题的确定性竞争比率很快被发现以美元为指数,而现在几乎已经解决了:在$\mega(2 ⁇ k)和$(k2 ⁇ k)之间。关于随机竞争比率,1993年Ramesh证明了这个比率必须至少为$\mega(k%2)/\log1 ⁇ sipslon}k(包括其他获称名的模型)。自1993年的正值正值正值正值的递增竞争率比率,自1993年以来,一个随机递增的Sloanalalal rudeal rual rual rudeal roal roal roal ral roal roal wocal wocal ral) ex 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员