The single shortest path algorithm is undefined for weighted finite-state automata over non-idempotent semirings because such semirings do not guarantee the existence of a shortest path. However, in non-idempotent semirings admitting an order satisfying a monotonicity condition (such as the plus-times or log semirings), the notion of shortest string is well-defined. We describe an algorithm which finds the shortest string for a weighted non-deterministic automaton over such semirings using the backwards shortest distance of an equivalent deterministic automaton (DFA) as a heuristic for A* search performed over a companion idempotent semiring, which is proven to return the shortest string. While there may be exponentially more states in the DFA, this algorithm needs to visit only a small fraction of them if determinization is performed "on the fly".
翻译:单一最短路径算法没有定义,因为这种半径不能保证一条最短路径的存在。然而,在非全能半径中,允许一个符合单音条件的命令的非全能半径(如加时或对数半径),最短字符串的概念定义非常明确。我们描述一种算法,在这种半径上找到一个最短的加权非非非非定线自动图,使用一个等效的确定性自动图(DFA)的后向最短距离,作为在一个伴生的半径上进行A* 搜索的超音速,这证明可以返回最短的字符串。虽然在DFA中可能有更多的指数性国家,但如果“在苍蝇上”进行确定,这种算法只需要访问其中的一小部分。