We study embeddings of continuous dynamical systems in larger dimensions via projector operators. We call this technique PEDS, projective embedding of dynamical systems, as the stable fixed point of the dynamics are recovered via projection from the higher dimensional space. In this paper we provide a general definition and prove that for a particular type of projector operator of rank-1, the uniform mean field projector, the equations of motion become a mean field approximation of the dynamical system. While in general the embedding depends on a specified variable ordering, the same is not true for the uniform mean field projector. In addition, we prove that the original stable fixed points remain stable fixed points of the dynamics, saddle points remain saddle, but unstable fixed points become saddles.
翻译:我们研究通过投影机操作员在较大层面嵌入连续动态系统。我们称之为PEDS技术,即投影嵌入动态系统,因为动态的稳定固定点是通过从高维空间投射而恢复的。在本文中,我们提供了一个一般定义,并证明对于一级1级的某类投影机操作员来说,统一的平均实地投影机,运动方程式成为动态系统的平均实地近似值。虽然嵌入一般取决于特定变量的定序,但对于统一平均投影机来说,情况并非如此。此外,我们证明原有的稳定固定点仍然是动态的稳定固定点,挂载点仍然是固定点,但不稳定的固定点成为马鞍。