3D dynamic point clouds provide a discrete representation of real-world objects or scenes in motion, which have been widely applied in immersive telepresence, autonomous driving, surveillance, etc. However, point clouds acquired from sensors are usually perturbed by noise, which affects downstream tasks such as surface reconstruction and analysis. Although many efforts have been made for static point cloud denoising, dynamic point cloud denoising remains under-explored. In this paper, we propose a novel gradient-field-based dynamic point cloud denoising method, exploiting the temporal correspondence via the estimation of gradient fields -- a fundamental problem in dynamic point cloud processing and analysis. The gradient field is the gradient of the log-probability function of the noisy point cloud, based on which we perform gradient ascent so as to converge each point to the underlying clean surface. We estimate the gradient of each surface patch and exploit the temporal correspondence, where the temporally corresponding patches are searched leveraging on rigid motion in classical mechanics. In particular, we treat each patch as a rigid object, which moves in the gradient field of an adjacent frame via force until reaching a balanced state, i.e., when the sum of gradients over the patch reaches 0. Since the gradient would be smaller when the point is closer to the underlying surface, the balanced patch would fit the underlying surface well, thus leading to the temporal correspondence. Finally, the position of each point in the patch is updated along the direction of the gradient averaged from corresponding patches in adjacent frames. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods under both synthetic noise and simulated real-world noise.
翻译:3D 动态点云层提供了现实世界天体或运动场景的离散表示,这些天体或场景被广泛应用于隐蔽的远地点、自主驱动、监视等。然而,传感器获得的点云层通常被噪音扰动,从而影响到地表重建和分析等下游任务。虽然已经为静点云分解做出了许多努力,但动态点云分解仍然未得到充分探索。在本文中,我们提出了一个新的基于坡地点的动态点点云或动态场景分解方法,通过对梯地域的估算来利用时间对应对应的日间通信 -- -- 这是动态点云层处理和分析中的一个根本问题。 梯地是噪音点云云云云云的日志概率功能的梯度,我们以此为基础执行梯度,使每个点与基本清洁表面汇合。我们估计每个表面的梯度梯度的梯度梯度的梯度,在经典机械模型中寻找与时间对应的补丁点。我们把每个补丁点都视为一个硬的物体,通过动态点的坡地表面上移动,直到达到平面的平面的平坦点, 从而显示地面的底的平面的基质质质质质系将更接近到最接近的底, 。在基底的平的基底的基底的平的底, 质质度将更接近于基底的基底的基面,, 将更接近地质度将更接近的底的底的底的底的底,, 直度将更接近度将更接近度将更接近于基面, 。 。 。 。,, 直至更接近于基底的底的基底的底的底的底的底的底的底的底的底的基面将更接近的底的底的底的底的底, 直度将更接近度将更接近度将更接近度将更接近度将更接近度将更接近度将更接近度将更接近度将更接近度将更接近度将更接近度将更接近度将更接近地基, 。