We consider the problem of answering connectivity queries on a real algebraic curve. The curve is given as the real trace of an algebraic curve, assumed to be in generic position, and being defined by some rational parametrizations. The query points are given by a zero-dimensional parametrization. We design an algorithm which counts the number of connected components of the real curve under study, and decides which query point lie in which connected component, in time log-linear in $N^6$, where $N$ is the maximum of the degrees and coefficient bit-sizes of the polynomials given as input. This matches the currently best-known bound for computing the topology of real plane curves. The main novelty of this algorithm is the avoidance of the computation of the complete topology of the curve.
翻译:我们考虑在真实的代数曲线上回答连接查询的问题。 曲线被描述为一个代数曲线的真实痕迹, 假设该曲线处于通用位置, 并且由某种合理的准美化来定义。 查询点由零维准化来给出。 我们设计了一个算法, 计算所研究的真实曲线的连接部件数量, 并决定哪个查询点是连接组件的连接部分, 时间线值为$N 6, 美元是作为输入而提供的多面形曲线的最大度和系数位数。 这与目前最著名的计算真实平面曲线的地形约束相吻合。 这个算法的主要新颖之处是避免计算曲线的完整地形。