Advanced Patch Attacks (PAs) on object detection in natural images have pointed out the great safety vulnerability in methods based on deep neural networks. However, little attention has been paid to this topic in Optical Remote Sensing Images (O-RSIs). To this end, we focus on this research, i.e., PAs on object detection in O-RSIs, and propose a more Threatening PA without the scarification of the visual quality, dubbed TPA. Specifically, to address the problem of inconsistency between local and global landscapes in existing patch selection schemes, we propose leveraging the First-Order Difference (FOD) of the objective function before and after masking to select the sub-patches to be attacked. Further, considering the problem of gradient inundation when applying existing coordinate-based loss to PAs directly, we design an IoU-based objective function specific for PAs, dubbed Bounding box Drifting Loss (BDL), which pushes the detected bounding boxes far from the initial ones until there are no intersections between them. Finally, on two widely used benchmarks, i.e., DIOR and DOTA, comprehensive evaluations of our TPA with four typical detectors (Faster R-CNN, FCOS, RetinaNet, and YOLO-v4) witness its remarkable effectiveness. To the best of our knowledge, this is the first attempt to study the PAs on object detection in O-RSIs, and we hope this work can get our readers interested in studying this topic.
翻译:关于自然图像中天体探测的高级补丁袭击(PAs)指出,在以深神经网络为基础的方法中,安全非常脆弱;然而,在光学遥感图像(O-RSI)中,很少注意这一专题。为此,我们把重点放在这一研究上,即在O-RSI中,天体探测PAs,提出一个更具有威胁性的PA(PAs),不给视觉质量留下疤痕,称为TPA(BDL),具体地说,为了解决现有补丁选择办法中地方和全球景观不一致的问题,我们提议利用目标功能的一极差异(FOD)来掩盖将要攻击的子节段。此外,考虑到将现有的协调损失直接应用于PAs时的梯度分散问题,我们为PAs设计了一个基于IOU的具体目标功能,把检测到的框距现有补丁系统选择方案太远,直到它们之间没有交叉点。 最后,在两种广泛使用的基准上,即O-O-O4号常规探测器和DO-O-RO-O-O研究中,我们关于这个典型目的的实验研究中,我们的第一个测测测测测点,可以将我们最精确的O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-I-I-I-I的实验的实验的实验的实验的实验的实验的本的实验性研究的实验性研究,可以全面评估。