We derive well-posed boundary conditions for the linearized Serre equations in one spatial dimension by using the energy method. An energy stable and conservative discontinuous Galerkin spectral element method with simple upwind numerical fluxes is proposed for solving the initial boundary value problem. We derive discrete energy estimates for the numerical approximation and prove a priori error estimates in the energy norm. Detailed numerical examples are provided to verify the theoretical analysis and show convergence of numerical errors.
翻译:我们使用能量方法推导出一维空间中线性Serre方程的良态边界条件。提出了一种能量稳定和保守的间断Galerkin谱元方法,其中使用简单的向上数值通量来解决初始边界值问题。我们导出了数值逼近的离散能量估计,并证明了能量范数下的一先验误差估计。详细的数字例子用于验证理论分析,并展示数值误差的收敛性。