项目名称: 间断Galerkin方法在透射特征值问题中的分析、计算和应用
项目编号: No.11271018
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 季霞
作者单位: 中国科学院数学与系统科学研究院
项目金额: 50万元
中文摘要: 透射特征值问题在电磁场散射和反散射问题中扮演着非常重要的角色。散射场可以用来确定可穿透物体的形状,是各向异性材料里反问题唯一性的一个重要工具。虽然该问题的提法很简洁,但它既非椭圆又非自伴,不涵盖在经典偏微分方程的理论中,因此对它的研究在理论上、应用上都很有意义。申请者将研究间断Galerkin方法(DG)在透射特征值问题中的分析、计算和应用,主要集中在双调和方程特征值问题、Helmholtz方程(2D)和Maxwell方程组(3D)透射特征值问题以及相关的反问题上。申请者会给出适当的格式,证明算法的谱正确性和收敛性,开发并完成并行程序软件包。
中文关键词: 透射特征值问题;多重校正方法;有限元方法;Helmholtz方程;四阶问题
英文摘要: Recently the transmission eigenvalues have attracted more and more attention in scattering and inverse scattering communities, because they can be used to estimate the material properties of the scattering objects,and are essential in the theoretical study of the uniqueness in inverse scattering theory. Although transmission eigenvalues problem is simply stated, it is neither elliptic nor self-adjoint, and it is not covered by any standard theory of partial differential equations. Therefore the proposed research on the transmission eigenvalues problem is necessary and is meaningful in both theory and application. We will apply discontinuous Galerkin method in the analysis, computation and application of the following transmission eigenvalues problems: the biharmonic eigenvalue problem, the transmission eigenvalue problem for Helmholtz equation (2D), the transmission eigenvalue problem for Maxwell''s equations (3D), and transmission eigenvalues in the inverse scattering problem. We will design an algorithm guaranteeing the spectral correctness and the numerical convergence; we will also develop corresponding parallel programs and provide the software package.
英文关键词: transmission eigenvalue problem;multi-correction method;finite element method;Helmhlotz equation;fourth order problem