项目名称: 随机双曲型偏微分方程的控制和观测
项目编号: No.11471231
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 吕琦
作者单位: 四川大学
项目金额: 65万元
中文摘要: 本项目拟研究正向随机双曲型方程的能控性、能观性、能稳性、最优控制以及反问题。我们期望分别证明一阶正向随机双曲型方程组和二阶正向随机双曲型方程在漂移项中的边界控制作用下是零能控的而在漂移项中的边界控制和扩散项中的内部控制的作用下是精确能控的。同时,我们将研究上述方程组和方程的最优控制问题,建立刻画最优控制的Pontryagin型最大值原理。其次,我们还将研究它们的能稳性问题,证明在我们所选择的不同的反馈作用下方程(方程组)的解是指数稳定的和对数稳定的。最后,我们将探讨上述方程和方程组的状态观测和系数识别问题,期望建立起从边界或内部观测来得到未知的初始状态或低阶项系数的方法。
中文关键词: 随机双曲型方程;能控性;能稳性;最优控制;反问题
英文摘要: This project is addressed to the study of the controllability problems, observability problems, stabilization problems, optimal control problems and inverse probelms of forward stochastic hyperbolic equations. We shall prove that the first order stochastic hyperbolic systems and the second order stochastic hyperbolic equations are null controllable by the localized boundary controls in the drift term. We shall also prove that they are exact controllable via a boundary control in the drift term and an internal control in the diffusion term. Meanwhile, we will study the optimal control problems for these systems and establish the Pontryagin-type maximum principle. Further, we will study the stabilization problems for these systems and show that these systems are exponential stablility and logarithmic stability under suitable feedback controls, respectively. At last, we will establish some methods to obtain the unknown initial state or coefficients of these systems by means of boundary observations or internal observations.
英文关键词: stochastic hyperbolic equations;controllability;stabilization;optimal control;inverse problems