Surrogate models have shown to be an extremely efficient aid in solving engineering problems that require repeated evaluations of an expensive computational model. They are built by sparsely evaluating the costly original model and have provided a way to solve otherwise intractable problems. A crucial aspect in surrogate modelling is the assumption of smoothness and regularity of the model to approximate. This assumption is however not always met in reality. For instance in civil or mechanical engineering, some models may present discontinuities or non-smoothness, e.g., in case of instability patterns such as buckling or snap-through. Building a single surrogate model capable of accounting for these fundamentally different behaviors or discontinuities is not an easy task. In this paper, we propose a three-stage approach for the approximation of non-smooth functions which combines clustering, classification and regression. The idea is to split the space following the localized behaviors or regimes of the system and build local surrogates that are eventually assembled. A sequence of well-known machine learning techniques are used: Dirichlet process mixtures models (DPMM), support vector machines and Gaussian process modelling. The approach is tested and validated on two analytical functions and a finite element model of a tensile membrane structure.
翻译:代用模型显示,在解决需要反复评价昂贵计算模型的工程问题方面,代用模型是极为有效的帮助,有助于解决需要反复评价昂贵的计算模型的工程问题,这些模型是通过很少评价昂贵的原始模型建立的,提供了解决其他棘手问题的方法。代用模型的一个重要方面是假设模型的平稳性和规律性,以近似模型的准确性和规律性。然而,这一假设并不总是在现实中实现。例如,在土木或机械工程方面,一些模型可能出现不连续或不协调的情况,例如,在出现不稳定模式,例如拼凑或快速通缩的情况下。建立一个能够计算这些根本不同的行为或不连续的单一代用模型并不是一件容易的任务。在本文件中,我们提议了一种三阶段方法,以近似非移动功能的近似性方法,将组合、分类和回归结合起来。这一方法的目的是在系统局部行为或制度之后分割空间,并建造最终组装的本地代用。使用了一套众所周知的机器学习技术:Drichlet工艺混合物模型(DPMMM),支持矢量机和高压过程模型。该方法在两个分析模型上进行了测试和验证。