Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (non-linear) sampling numbers of (quasi-)Banach smoothness spaces in $L^2$. In relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in $L^2$ can be upper bounded by best $n$-term trigonometric widths in $L^\infty$. We describe a recovery procedure based on $\ell^1$-minimization (basis pursuit denoising) using only $m$ function values. With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of $n^{-1/2}$ compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to $S^r_pW(\mathbb{T}^d)$ on the $d$-torus with a logarithmically better rate of convergence than any linear method can achieve when $1 < p < 2$ and $d$ is large. This effect is not present for isotropic Sobolev spaces.
翻译:使用压缩遥感领域最近开发的技术,我们证明在普通(非线性)Banach平滑空间(quasi-)取样数量方面,(quasi-)Banach平滑空间的新的上限值为$2美元。在混合和偏重加权Wiener类或平滑度混合的Sobolev空间等相关案例中,我们发现,与加权维纳空间的线性方法相比,以$%2美元计算的取样数量可以增加速度。对于准Banach对等方来说,甚至可以使用任意的多元加速。令人惊讶的是,我们的方法允许仅使用$m美元功能值来恢复混合的光滑运行功能。使用这种方法,与最近开发的线性恢复方法相比,趋同率有了显著的提高。在这种确定性最坏的情况下,我们可以看到比加权维纳空间的线性宽度宽度宽度宽度高出$2美元。在目前这种直线性水平上可以恢复属于$ < r_par_b_bral_b_b_brus a prass prass pration legle a mass be a mess $ be a mess a mess a p p prass prass is be a mess a mess a mus a p p p p p p p p p p p p p p p p prviclex a d d d d d d d d d d d d d lex is is is is is is is is is is is is is is 任何 ex