Gaussian processes are arguably the most important model class in spatial statistics. They encode prior information about the modeled function and can be used for exact or approximate Bayesian inference. In many applications, particularly in physical sciences and engineering, but also in areas such as geostatistics and neuroscience, invariance to symmetries is one of the most fundamental forms of prior information one can consider. The invariance of a Gaussian process' covariance to such symmetries gives rise to the most natural generalization of the concept of stationarity to such spaces. In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces arising in the context of symmetries. Our techniques make it possible to (i) calculate covariance kernels and (ii) sample from prior and posterior Gaussian processes defined on such spaces, both in a practical manner. This work is split into two parts, each involving different technical considerations: part I studies compact spaces, while part II studies non-compact spaces possessing certain structure. Our contributions make the non-Euclidean Gaussian process models we study compatible with well-understood computational techniques available in standard Gaussian process software packages, thereby making them accessible to practitioners.
翻译:高斯进程可以说是空间统计中最重要的模型类。 它们编码了关于模型功能的先前信息, 可用于精确或近似贝叶斯的推断。 在许多应用中, 特别是在物理科学和工程领域, 但也在地理统计学和神经科学等领域, 对对对称的偏差是人们可以考虑的先前信息的最根本形式之一。 高斯进程对于这种对称的偏差导致对此类空间的固定性概念最自然的概括化。 在这项工作中, 我们开发了建设性和实用的技术, 用于在非常大类别的非欧裔空间上建立固定的高斯进程, 特别是在物理科学和工程学领域, 但也用于在对称方面产生的领域。 我们的技术使得有可能(i) 计算共性内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内研究。