Unsupervised contrastive learning achieves great success in learning image representations with CNN. Unlike most recent methods that focused on improving accuracy of image classification, we present a novel contrastive learning approach, named DetCo, which fully explores the contrasts between global image and local image patches to learn discriminative representations for object detection. DetCo has several appealing benefits. (1) It is carefully designed by investigating the weaknesses of current self-supervised methods, which discard important representations for object detection. (2) DetCo builds hierarchical intermediate contrastive losses between global image and local patches to improve object detection, while maintaining global representations for image recognition. Theoretical analysis shows that the local patches actually remove the contextual information of an image, improving the lower bound of mutual information for better contrastive learning. (3) Extensive experiments on PASCAL VOC, COCO and Cityscapes demonstrate that DetCo not only outperforms state-of-the-art methods on object detection, but also on segmentation, pose estimation, and 3D shape prediction, while it is still competitive on image classification. For example, on PASCAL VOC, DetCo-100ep achieves 57.4 mAP, which is on par with the result of MoCov2-800ep. Moreover, DetCo consistently outperforms supervised method by 1.6/1.2/1.0 AP on Mask RCNN-C4/FPN/RetinaNet with 1x schedule. Code will be released at \href{https://github.com/xieenze/DetCo}{\color{blue}{\tt github.com/xieenze/DetCo}}.


翻译:未经监督的对比学习在与CNN的图像演示中取得了巨大成功。 与最近侧重于提高图像分类准确性的方法不同,我们展示了一种新型的对比学习方法,名为DetCo,它充分探索了全球图像和地方图像补丁之间的对比度,以了解对物体检测的区别性表现。 DotCo有若干令人感兴趣的好处。 (1) 它通过调查当前自我监督方法的弱点而精心设计,这些方法抛弃了对物体检测的重要表现。 (2) DetCo在全球图像和本地补丁之间建立了等级的中间对比性损失,以改进物体检测,同时保持了全球图像识别。理论分析表明,本地补丁实际上删除了图像的背景信息,改善了相互信息的较低范围,以更好地进行对比学习。 (3) PASAL VOC、COCO和城市景象的广泛实验表明,DetCo不仅在物体检测方面超越了状态和艺术方法,而且还在分解、显示估计和3DFSFS的形状预测方面,而在图像分类方面仍然具有竞争力。 例如,在 PCAL VOC、 Detco-enalalal-100/Dequal-Ax the Fermax, 这是在Peal-deal-

0
下载
关闭预览

相关内容

【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关VIP内容
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】学习多视图相似度(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关论文
Top
微信扫码咨询专知VIP会员