In a weakly-supervised scenario object detectors need to be trained using image-level annotation alone. Since bounding-box-level ground truth is not available, most of the solutions proposed so far are based on an iterative, Multiple Instance Learning framework in which the current classifier is used to select the highest-confidence boxes in each image, which are treated as pseudo-ground truth in the next training iteration. However, the errors of an immature classifier can make the process drift, usually introducing many of false positives in the training dataset. To alleviate this problem, we propose in this paper a training protocol based on the self-paced learning paradigm. The main idea is to iteratively select a subset of images and boxes that are the most reliable, and use them for training. While in the past few years similar strategies have been adopted for SVMs and other classifiers, we are the first showing that a self-paced approach can be used with deep-network-based classifiers in an end-to-end training pipeline. The method we propose is built on the fully-supervised Fast-RCNN architecture and can be applied to similar architectures which represent the input image as a bag of boxes. We show state-of-the-art results on Pascal VOC 2007, Pascal VOC 2010 and ILSVRC 2013. On ILSVRC 2013 our results based on a low-capacity AlexNet network outperform even those weakly-supervised approaches which are based on much higher-capacity networks.
翻译:然而,不成熟的分类器的错误可以使流程漂移,通常会在培训数据集中引入许多虚假的正数。为了缓解这一问题,我们在此文件中提议了一个基于自快学习模式的培训协议。主要的想法是反复选择一组最可靠的图像和框,并将其用于培训。虽然在过去几年中,SVMS和其他分类器采用了类似的战略,但我们是第一个显示,在基于深网络的分类器中,可以在基于终端到终端的培训管道中使用自定速度的方法。我们建议的方法建在完全超前的快速RCNNF网络中。我们提出的方法建在基于快速学习模式的培训协议上。主要的理念是迭接地选择一组最可靠的图像和框,并将它们用于培训。虽然在过去几年里,对SVMS和其他分类器采用了类似的策略。但是,我们第一次显示,在基于终端到终端的培训管道中可以与基于深网络的分类器使用自定速度的方法。我们提出的方法建在完全超过快的RCNNF结构上。我们提出的方法可以用来在2007年的甚高的PA-RCS-CR图像中显示类似结构。我们基于2010年的V-RCF格式的图像。我们用来显示基于2010年的V-RCR的图像的图像的图像。