We investigate semantic guarantees of private learning algorithms for their resilience to training Data Reconstruction Attacks (DRAs) by informed adversaries. To this end, we derive non-asymptotic minimax lower bounds on the adversary's reconstruction error against learners that satisfy differential privacy (DP) and metric differential privacy (mDP). Furthermore, we demonstrate that our lower bound analysis for the latter also covers the high dimensional regime, wherein, the input data dimensionality may be larger than the adversary's query budget. Motivated by the theoretical improvements conferred by metric DP, we extend the privacy analysis of popular deep learning algorithms such as DP-SGD and Projected Noisy SGD to cover the broader notion of metric differential privacy.


翻译:我们研究了私有学习算法对抗知情敌手的训练数据重建攻击(DRA)的语义保证。为此,我们得到了适用于差分隐私(DP)和度量差分隐私(mDP)的、对抗者重建错误的最小极小下界。此外,我们证明了后者的下限分析也覆盖了高维度情况,在此情况下,输入数据的维数可能大于敌手的查询预算。受度量差分隐私领域的理论进步的启发,我们扩展了DP-SGD和Projected Noisy SGD等流行深度学习算法的隐私分析,以覆盖更广泛的度量差分隐私概念。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月27日
Automatic sparse PCA for high-dimensional data
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员