Mathematical notions of privacy, such as differential privacy, are often stated as probabilistic guarantees that are difficult to interpret. It is imperative, however, that the implications of data sharing be effectively communicated to the data principal to ensure informed decision-making and offer full transparency with regards to the associated privacy risks. To this end, our work presents a rigorous quantitative evaluation of the protection conferred by private learners by investigating their resilience to training data reconstruction attacks. We accomplish this by deriving non-asymptotic lower bounds on the reconstruction error incurred by any adversary against $(\epsilon, \delta)$ differentially private learners for target samples that belong to any compact metric space. Working with a generalization of differential privacy, termed metric privacy, we remove boundedness assumptions on the input space prevalent in prior work, and prove that our results hold for general locally compact metric spaces. We extend the analysis to cover the high dimensional regime, wherein, the input data dimensionality may be larger than the adversary's query budget, and demonstrate that our bounds are minimax optimal under certain regimes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月13日
Arxiv
0+阅读 · 2023年7月12日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员