Pervasive cross-section dependence is increasingly recognized as a characteristic of economic data and the approximate factor model provides a useful framework for analysis. Assuming a strong factor structure where $\Lop\Lo/N^\alpha$ is positive definite in the limit when $\alpha=1$, early work established convergence of the principal component estimates of the factors and loadings up to a rotation matrix. This paper shows that the estimates are still consistent and asymptotically normal when $\alpha\in(0,1]$ albeit at slower rates and under additional assumptions on the sample size. The results hold whether $\alpha$ is constant or varies across factors. The framework developed for heterogeneous loadings and the simplified proofs that can be also used in strong analysis are of independent interest
翻译:越来越多的人认识到,横跨截面依赖性是经济数据的一个特征,近似系数模型为分析提供了一个有用的框架。假设一个强大的因素结构,假设一个强大的因素结构,即$\Lop\Lo/N ⁇ alpha$在alpha=1美元的限度内肯定为正数,早期工作确定了因素主要组成部分估计数的趋同,并加载到一个旋转矩阵中。本文表明,当$\alpha\in(0.01)美元时,估计数仍然一致且无常数,尽管以较慢的速度计算,而且根据对抽样规模的额外假设。结果显示,$\alpha$是不变的,还是因各种因素而不同而异。为各种因素制定的框架和可用于有力分析的简化证据也是独立的。