Modern statistical problems often involve such linear inequality constraints on model parameters. Ignoring natural parameter constraints usually results in less efficient statistical procedures. To this end, we define a notion of `sparsity' for such restricted sets using lower-dimensional features. We allow our framework to be flexible so that the number of restrictions may be higher than the number of parameters. One such situation arise in estimation of monotone curve using a non parametric approach e.g. splines. We show that the proposed notion of sparsity agrees with the usual notion of sparsity in the unrestricted case and proves the validity of the proposed definition as a measure of sparsity. The proposed sparsity measure also allows us to generalize popular priors for sparse vector estimation to the constrained case.
翻译:现代统计问题往往涉及对模型参数的线性不平等限制。忽视自然参数限制通常导致效率低下的统计程序。为此目的,我们用较低维度特征为这些受限制的数据集界定了“平等”的概念。我们允许我们的框架具有灵活性,以便限制的数量可能高于参数的数量。在使用非参数方法(如样条)估算单色曲线时出现这种情况。我们表明,拟议的宽度概念同意在无限制情况下通常的宽度概念,并证明拟议的定义作为宽度的衡量标准是有效的。拟议的宽度措施还使我们能够将稀少病媒估计的流行先兆与受限制的病例相提并论。