In location estimation, we are given $n$ samples from a known distribution $f$ shifted by an unknown translation $\lambda$, and want to estimate $\lambda$ as precisely as possible. Asymptotically, the maximum likelihood estimate achieves the Cram\'er-Rao bound of error $\mathcal N(0, \frac{1}{n\mathcal I})$, where $\mathcal I$ is the Fisher information of $f$. However, the $n$ required for convergence depends on $f$, and may be arbitrarily large. We build on the theory using \emph{smoothed} estimators to bound the error for finite $n$ in terms of $\mathcal I_r$, the Fisher information of the $r$-smoothed distribution. As $n \to \infty$, $r \to 0$ at an explicit rate and this converges to the Cram\'er-Rao bound. We (1) improve the prior work for 1-dimensional $f$ to converge for constant failure probability in addition to high probability, and (2) extend the theory to high-dimensional distributions. In the process, we prove a new bound on the norm of a high-dimensional random variable whose 1-dimensional projections are subgamma, which may be of independent interest.


翻译:在位置估计中,我们从一个已知的分发美元转折的美元中得到一美元样本,该美元被一个未知的翻译转折为1美元,我们想要尽可能精确地估算美元。从某种意义上讲,最大可能性估计达到误差的Cram\'er-Rao的误差的上限值N美元(0,\frac{1 ⁇ n\mathcal I})美元,其中美元到mathcal I美元是渔业信息美元。然而,趋同所需的一美元取决于美元,而且可能任意地很大。我们利用 emph{smoosed} 来将美元值的误差值绑在理论上,用 $\ mathcal I_r 美元, 的误差值为 $- smooppy分布的Fisherisher 信息。 美元到 美元到 美元, 美元到 美元, 美元到 美元, 美元 美元到 美元 美元, 美元, 美元到 美元, 美元, 和 美元绑定值, 新的 Cram_绑。我们(1) 改进了先前的工作, 美元 美元到 标准 的概率到 高数值 概率, 的概率, 直为 直成为 。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
71+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
75+阅读 · 2021年12月8日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月28日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
0+阅读 · 2023年3月24日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员