In location estimation, we are given $n$ samples from a known distribution $f$ shifted by an unknown translation $\lambda$, and want to estimate $\lambda$ as precisely as possible. Asymptotically, the maximum likelihood estimate achieves the Cram\'er-Rao bound of error $\mathcal N(0, \frac{1}{n\mathcal I})$, where $\mathcal I$ is the Fisher information of $f$. However, the $n$ required for convergence depends on $f$, and may be arbitrarily large. We build on the theory using \emph{smoothed} estimators to bound the error for finite $n$ in terms of $\mathcal I_r$, the Fisher information of the $r$-smoothed distribution. As $n \to \infty$, $r \to 0$ at an explicit rate and this converges to the Cram\'er-Rao bound. We (1) improve the prior work for 1-dimensional $f$ to converge for constant failure probability in addition to high probability, and (2) extend the theory to high-dimensional distributions. In the process, we prove a new bound on the norm of a high-dimensional random variable whose 1-dimensional projections are subgamma, which may be of independent interest.
翻译:在位置估计中,我们从一个已知的分发美元转折的美元中得到一美元样本,该美元被一个未知的翻译转折为1美元,我们想要尽可能精确地估算美元。从某种意义上讲,最大可能性估计达到误差的Cram\'er-Rao的误差的上限值N美元(0,\frac{1 ⁇ n\mathcal I})美元,其中美元到mathcal I美元是渔业信息美元。然而,趋同所需的一美元取决于美元,而且可能任意地很大。我们利用 emph{smoosed} 来将美元值的误差值绑在理论上,用 $\ mathcal I_r 美元, 的误差值为 $- smooppy分布的Fisherisher 信息。 美元到 美元到 美元, 美元到 美元, 美元到 美元, 美元 美元到 美元 美元, 美元, 美元到 美元, 美元, 和 美元绑定值, 新的 Cram_绑。我们(1) 改进了先前的工作, 美元 美元到 标准 的概率到 高数值 概率, 的概率, 直为 直成为 。