This paper proposes a data-driven approximate Bayesian computation framework for parameter estimation and uncertainty quantification of epidemic models, which incorporates two novelties: (i) the identification of the initial conditions by using plausible dynamic states that are compatible with observational data; (ii) learning of an informative prior distribution for the model parameters via the cross-entropy method. The new methodology's effectiveness is illustrated with the aid of actual data from the COVID-19 epidemic in Rio de Janeiro city in Brazil, employing an ordinary differential equation-based model with a generalized SEIR mechanistic structure that includes time-dependent transmission rate, asymptomatics, and hospitalizations. A minimization problem with two cost terms (number of hospitalizations and deaths) is formulated, and twelve parameters are identified. The calibrated model provides a consistent description of the available data, able to extrapolate forecasts over a few weeks, making the proposed methodology very appealing for real-time epidemic modeling.
翻译:本文件提出一个以数据驱动的近似巴伊西亚计算框架,用于流行病模型的参数估计和不确定性量化,其中包括两个新颖之处:(一) 通过使用与观测数据相容的可信的动态状态,确定初步条件;(二) 通过跨渗透性方法,了解模型参数的事先信息分配情况,通过巴西里约热内卢市COVID-19流行病的实际数据,说明新方法的有效性,采用基于普通差异方程的模型,采用通用的SEIR机械结构,包括基于时间的传播率、无症状和住院治疗,制定了两个成本条件(住院和死亡人数)的最小化问题,确定了12项参数,调整后模型对可用数据进行了一致描述,能够在数周内进行外推预测,使拟议方法对实时流行病建模非常有吸引力。