We give an improved theoretical analysis of score-based generative modeling. Under a score estimate with small $L^2$ error (averaged across timesteps), we provide efficient convergence guarantees for any data distribution with second-order moment, by either employing early stopping or assuming smoothness condition on the score function of the data distribution. Our result does not rely on any log-concavity or functional inequality assumption and has a logarithmic dependence on the smoothness. In particular, we show that under only a finite second moment condition, approximating the following in reverse KL divergence in $\epsilon$-accuracy can be done in $\tilde O\left(\frac{d \log (1/\delta)}{\epsilon}\right)$ steps: 1) the variance-$\delta$ Gaussian perturbation of any data distribution; 2) data distributions with $1/\delta$-smooth score functions. Our analysis also provides a quantitative comparison between different discrete approximations and may guide the choice of discretization points in practice.
翻译:我们改进了基于分数的基因模型的理论分析。 在使用小L%2美元错误(平均跨时间步骤)的分数估计下,我们通过在数据分布的分数函数上采用早期停止或假定平稳条件,为以第二阶秒分配数据提供有效的趋同保证。我们的结果并不依赖于任何对数调或功能不平等假设,而是对均度依赖。特别是,我们显示,在仅仅一个有限的第二秒条件下,在以美元表示的逆差中,以下的KL差差值接近于美元/日元-准确度,我们的分析还可以在美元/月/日元/日元(frac{d\log)(1/\delta)-hepsilon_right)中以美元步骤为数据分布提供有效的趋同保证:(1) 数据分布的差异- $(delta) 美元/ gausian Perturbation;(2) 数据分布有1/\delta$-moth分数函数。我们的分析还提供不同离切近点之间的定量比较,并可能指导实际选择离点的选择。