Real-world Electronic Health Records (EHRs) are often plagued by a high rate of missing data. In our EHRs, for example, the missing rates can be as high as 90% for some features, with an average missing rate of around 70% across all features. We propose a Time-Aware Dual-Cross-Visit missing value imputation method, named TA-DualCV, which spontaneously leverages multivariate dependencies across features and longitudinal dependencies both within- and cross-visit to maximize the information extracted from limited observable records in EHRs. Specifically, TA-DualCV captures the latent structure of missing patterns across measurements of different features and it also considers the time continuity and capture the latent temporal missing patterns based on both time-steps and irregular time-intervals. TA-DualCV is evaluated using three large real-world EHRs on two types of tasks: an unsupervised imputation task by varying mask rates up to 90% and a supervised 24-hour early prediction of septic shock using Long Short-Term Memory (LSTM). Our results show that TA-DualCV performs significantly better than all of the existing state-of-the-art imputation baselines, such as DETROIT and TAME, on both types of tasks.


翻译:现实世界电子健康记录(EHRs)常常被大量缺失数据困扰。例如,在我们的电子健康记录(EHRs)中,某些特征的缺失率可能高达90%,所有特征的平均缺失率约为70%左右。我们提议了一个名为TA-DualCV的“时间-软件双曲线-天视缺失价值估算法 ”, 该方法自发地利用各种特征之间的多重依赖性和纵向依赖性,以最大限度地利用从EHRs有限的可观测记录中提取的信息。具体地说,TA-DualCV 捕捉到不同特征测量中缺失模式的潜在结构,平均缺失率约为70%。我们还根据时间跨度和不规则的时间跨度来考虑时间-时间-天际计算方法。 TA-DalCV 正在用三种大型真实世界电子HR(EHRs)来评估两种任务:一种是未经监督的估算的估算任务,其遮盖率高达90%,而一种是监督的24小时的化预测,利用长期短期记忆(LSTM)对化电磁测测测,其所有类型都显示TA-AT-AT-D-D-D-D-D-D-D-D-D-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员