Non-Gaussian Bayesian filtering is a core problem in stochastic filtering. The difficulty of the problem lies in parameterizing the state estimates. However the existing methods are not able to treat it well. We propose to use power moments to obtain a parameterization. Unlike the existing parametric estimation methods, our proposed algorithm does not require prior knowledge about the state to be estimated, e.g. the number of modes and the feasible classes of function. Moreover, the proposed algorithm is not required to store massive parameters during filtering as the existing nonparametric Bayesian filters, e.g. the particle filter. The parameters of the proposed parametrization can also be determined by a convex optimization scheme with moments constraints, to which the solution is proved to exist and be unique. A necessary and sufficient condition for all the power moments of the density estimate to exist and be finite is provided. The errors of power moments are analyzed for the density estimate being either light-tailed or heavy-tailed. Error upper bounds of the density estimate for the one-step prediction are proposed. Simulation results on different types of density functions of the state are given, including the heavy-tailed densities, to validate the proposed algorithm.
翻译:这个问题的困难在于国家估算参数的参数化。 但是,现有的方法无法很好地处理。 我们提议使用电源时间来获得参数化。 与现有的参数估计方法不同, 我们提议的算法并不要求事先了解要估计的状态, 例如模式的数量和可行的功能类别。 此外, 拟议的算法不需要在过滤过程中储存大量参数, 因为现有的非参数贝叶西亚过滤器, 例如粒子过滤器。 拟议的超光速化参数的参数也可以由带有时间限制的 convex优化方案来决定, 解决方案已经证明存在并且是独一无二的。 提供了一个必要和充分的条件, 使密度估计的所有电源时间都能够存在并且是有限的。 对电源时间错误进行了分析, 密度估计要么是轻细的, 要么是重的。 提出了单步预测密度估计的上限错误。 提出了不同类型密度参数的模拟结果, 包括重的精确度。