This paper studies the role of over-parametrization in solving non-convex optimization problems. The focus is on the important class of low-rank matrix sensing, where we propose an infinite hierarchy of non-convex problems via the lifting technique and the Burer-Monteiro factorization. This contrasts with the existing over-parametrization technique where the search rank is limited by the dimension of the matrix and it does not allow a rich over-parametrization of an arbitrary degree. We show that although the spurious solutions of the problem remain stationary points through the hierarchy, they will be transformed into strict saddle points (under some technical conditions) and can be escaped via local search methods. This is the first result in the literature showing that over-parametrization creates a negative curvature for escaping spurious solutions. We also derive a bound on how much over-parametrization is requited to enable the elimination of spurious solutions.
翻译:本文研究了超平衡化在解决非碳化优化问题中的作用。 重点是低级矩阵感测的重要类别, 我们通过提升技术和布勒- 蒙泰罗因子化提出无穷无尽的非碳化问题等级。 这与现有的超平衡化技术形成鲜明对比, 在超平衡化技术中, 搜索等级受矩阵的维度限制, 不允许任意程度的过度平衡化。 我们表明,尽管这个问题的虚假解决方案仍然是等级不变的, 但它们将转化为严格的支撑点( 在某些技术条件下), 并可以通过本地搜索方法逃脱。 这是文献显示过度平衡化为逃避虚假解决方案创造了负面曲线的第一个结果。 我们还就过度平衡化如何得到补偿,以便消除虚假解决方案。