The study of almost surely discrete random probability measures is an active line of research in Bayesian nonparametrics. The idea of assuming interaction across the atoms of the random probability measure has recently spurred significant interest in the context of Bayesian mixture models. This allows the definition of priors that encourage well separated and interpretable clusters. In this work, we provide a unified framework for the construction and the Bayesian analysis of random probability measures with interacting atoms, encompassing both repulsive and attractive behaviors. Specifically we derive closed-form expressions for the posterior distribution, the marginal and predictive distributions, which were not previously available except for the case of measures with i.i.d. atoms. We show how these quantities are fundamental both for prior elicitation and to develop new posterior simulation algorithms for hierarchical mixture models. Our results are obtained without any assumption on the finite point process that governs the atoms of the random measure. Their proofs rely on new analytical tools borrowed from the theory of Palm calculus and that might be of independent interest. We specialize our treatment to the classes of Poisson, Gibbs, and Determinantal point processes, as well as to the case of shot-noise Cox processes.
翻译:几乎肯定离散随机概率测量的研究是巴伊西亚非参数中一项积极的研究线。 假设随机概率测量的原子之间相互作用的想法最近激发了人们对巴伊西亚混合模型的极大兴趣。 这样可以定义鼓励分离和可解释的混合模型的前期定义。 在这项工作中, 我们提供了一个统一的框架, 用于构建和巴伊西亚分析随机概率测量与相互作用原子的随机概率测量, 包括令人厌恶和有吸引力的行为。 具体地说, 我们从后方分布、 边缘和预测分布中得出封闭式的表达方式, 此前除了i. i. d. 原子的措施外, 这些表达方式是无法使用的。 我们展示了这些数量对于事先引出和为等级混合模型开发新的后端模拟算法都是至关重要的。 我们的结果是在没有假设调节随机测量原子的定点过程的情况下获得的。 它们的证据依赖于从棕榈微积分理论中借用的新的分析工具, 并且可能具有独立的兴趣。 我们将这些我们对待Poisson、 Glibis和Dustina过程的类别作为拍摄过程的一个案例。