Homomorphic Encryption (HE) is a set of powerful properties of certain cryptosystems that allow for privacy-preserving operation over the encrypted text. Still, HE is not widespread due to limitations in terms of efficiency and usability. Among the challenges of HE, scheme parametrization (i.e., the selection of appropriate parameters within the algorithms) is a relevant multi-faced problem. First, the parametrization needs to comply with a set of properties to guarantee the security of the underlying scheme. Second, parametrization requires a deep understanding of the low-level primitives since the parameters have a confronting impact on the precision, performance, and security of the scheme. Finally, the circuit to be executed influences, and it is influenced by, the parametrization. Thus, there is no general optimal selection of parameters, and this selection depends on the circuit and the scenario of the application. Currently, most of the existing HE frameworks require cryptographers to address these considerations manually. It requires a minimum of expertise acquired through a steep learning curve. In this paper, we propose a unified solution for the aforementioned challenges. Concretely, we present an expert system combining Fuzzy Logic and Linear Programming. The Fuzzy Logic Modules receive a user selection of high-level priorities for the security, efficiency, and performance of the cryptosystem. Based on these preferences, the expert system generates a Linear Programming Model that obtains optimal combinations of parameters by considering those priorities while preserving a minimum level of security for the cryptosystem. We conduct an extended evaluation where we show that an expert system generates optimal parameter selections that maintain user preferences without undergoing the inherent complexity of analyzing the circuit.
翻译:基因加密(HE)是某些加密系统的强大特性,可以对加密文本进行隐私保存操作。尽管如此,由于在效率和可用性方面的限制,HE并不普遍。在HE的挑战中,计划对称化(即在算法中选择适当的参数)是一个相关的多方面的问题。首先,对称化需要遵守一套保证基本计划安全的特性。第二,对称化需要深入理解低层次原始参数,因为参数对系统精确度、性能和安全性能有正面影响。最后,HE的电路并不普遍,它受到准称化的影响。因此,没有总体的最佳参数选择,而这种选择取决于应用的电路和情景。目前,大部分现有的HE框架需要加密人员手动处理这些考虑这些考虑。它需要通过精确的学习曲线获得最起码的专门知识。在本文中,我们为上述系统的精确精度、运行的电路路路路路路段的精度提供了一种最优性能评估水平,而我们则将一个最精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细细细细的精细的精细的精细的精细细细细细细