项目名称: 磁流体及其相关模型的定性研究
项目编号: No.11301431
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 徐新英
作者单位: 厦门大学
项目金额: 23万元
中文摘要: 本项目拟研究可压缩Navier-Stokes方程组和磁流体(MHD)方程组一般初值二维球对称和三维柱对称的自由边界问题,考虑这两种情形下两类方程组自由边界问题整体解的存在性、拉格朗日(Lagrange)结构以及大时间行为;三维不可压非齐次含真空的MHD方程组小能量意义下整体强(经典)解的存在性、唯一性和解的大时间行为;高维可压Naiver-Stokes-Poisson方程含有真空时初始小能量意义下整体大解的存在性、正则性;研究高维可压Navier-Stokes-Poisson方程的自由边界问题,考虑整体解的存在性、拉格朗日(Lagrange)结构以及大时间行为。
中文关键词: 可压缩;磁流体方程;整体解;衰减;微极性流方程
英文摘要: This project will study the boundary value problems of the compressible Navier-Stokes and magnetohydrodynamic(MHD) equations with common initial data, we mainly study the two-dimensional spherical symmetry and three-dimensional cylindrical symmetry free boundary problems to the two equations,discussing the existence of global solutions, Lagrange structure and large -time behaviour of these two situations;The existence,uniqueness and regularity of global strong (classical)solution with vacuum to the three-dimensional nonhomogeneous incompressible MHD equations in the sense of initial small energy;The existence and regularity of the global large solutions to high-dimensional Navier-Stokes-Possion equations with small energy;The Bundary value problem of compressible Navier-Stokes-Poisson equations, such as the existence of global solutions, Lagrange structure and large -time behaviour.
英文关键词: compressible;MHD equations;global solution;decay;micropolar fluid equations