In this work we tackle the problem of estimating the density $f_X$ of a random variable $X$ by successive smoothing, such that the smoothed random variable $Y$ fulfills $(\partial_t - \Delta_1)f_Y(\,\cdot\,, t) = 0$, $f_Y(\,\cdot\,, 0) = f_X$. With a focus on image processing, we propose a product/fields of experts model with Gaussian mixture experts that admits an analytic expression for $f_Y (\,\cdot\,, t)$ under an orthogonality constraint on the filters. This construction naturally allows the model to be trained simultaneously over the entire diffusion horizon using empirical Bayes. We show preliminary results on image denoising where our model leads to competitive results while being tractable, interpretable, and having only a small number of learnable parameters. As a byproduct, our model can be used for reliable noise estimation, allowing blind denoising of images corrupted by heteroscedastic noise.
翻译:在这项工作中,我们通过连续的平滑来估计随机变量X$的密度(f_X$)问题,这样,平滑的随机变量Y$将满足$(separt_t -\Delta_1)f_Y(\\\\\\\cdott\,t)=0美元,$_Y(\\\\\\\\\cdot\\,0)=f_X$)=F_X$。在侧重于图像处理的同时,我们建议与高斯混合专家一起制作一个专家模型产品/领域,该模型在过滤器的正方位限制下接受分析表达(\\\\\cdott\\,t)$。这一构造自然允许模型在整个扩散地段同时使用经验性海湾进行训练。我们展示了图像在可调控、可解释和只有少量可学习参数的图像上如何淡化的初步结果。作为副产品,我们的模型可用于可靠的噪音估计,允许被黑动的图像盲分解。