This study proposes a novel coupled-mode theory for two-dimensional exterior Helmholtz problems. The proposed approach is based on the separation of the entire space R2 into a fictitious disk and its exterior. The disk is allocated in such a way that it comprises all the inhomogeneity; therefore, the exterior supports cylindrical waves with a continuous spectrum. For the interior, we expand an unknown wave field using normal modes that satisfy some auxiliary boundary conditions on the surface of the disk. For the interior expansion, we propose combining the Neumann and Dirichlet normal modes. We show that the proposed expansion sacrifices L2 orthogonality but significantly improve the convergence. Finally, we present some numerical verifications of the proposed coupled-mode theory.
翻译:本研究为两维外壳问题提出了一个新颖的混合模式理论。 提议的方法基于将整个空间R2分离成一个假磁盘及其外壳。 磁盘的分配方式包括所有不相容性; 因此, 外部支持圆柱形波, 其频谱是连续的。 内地, 我们使用正常模式扩大未知的波场, 满足磁盘表面的一些辅助边界条件 。 内地扩张时, 我们提议合并Neumann和Drichlet的正常模式 。 我们显示, 提议的扩张牺牲L2 或Thotocolity, 但却大大改进了趋同性 。 最后, 我们提出对提议的组合模式理论进行一些数字核查 。