Object detection and classification using aerial images is a challenging task as the information regarding targets are not abundant. Synthetic Aperture Radar(SAR) images can be used for Automatic Target Recognition(ATR) systems as it can operate in all-weather conditions and in low light settings. But, SAR images contain salt and pepper noise(speckle noise) that cause hindrance for the deep learning models to extract meaningful features. Using just aerial view Electro-optical(EO) images for ATR systems may also not result in high accuracy as these images are of low resolution and also do not provide ample information in extreme weather conditions. Therefore, information from multiple sensors can be used to enhance the performance of Automatic Target Recognition(ATR) systems. In this paper, we explore a methodology to use both EO and SAR sensor information to effectively improve the performance of the ATR systems by handling the shortcomings of each of the sensors. A novel Multi-Modal Domain Fusion(MDF) network is proposed to learn the domain invariant features from multi-modal data and use it to accurately classify the aerial view objects. The proposed MDF network achieves top-10 performance in the Track-1 with an accuracy of 25.3 % and top-5 performance in Track-2 with an accuracy of 34.26 % in the test phase on the PBVS MAVOC Challenge dataset [18].
翻译:使用航空图像进行天体探测和分类是一项艰巨的任务,因为有关目标的信息并不丰富。 合成孔径雷达(SAR)图像可以用于自动目标识别系统(ATR),因为它可以在全天候和低光环境下运行。 但是,合成孔径雷达图像含有盐和辣椒噪音(Ppeckle 噪声),妨碍深层学习模型获取有意义的特征。 使用简单的航空视图用于ATR系统的电子光学(EO)图像也可能不会导致高精确度,因为这些图像分辨率低,在极端天气条件下也无法提供充足信息。 因此,多个传感器的信息可用于提高自动目标识别系统(ATR)的性能。 在本文中,我们探索了一种方法,通过处理每个传感器的缺陷来有效改进ATR系统的性能,使用EO和辣椒噪声(sppecle mockkle) 。 一个新的多式多式光学(EO-EO) Dusion(MDF) 网络可能无法从多式数据中了解域网的惯性特性,也无法对天体物体进行准确分类。 拟议的MDFS网络在最大轨道上取得第10级P- 5级P- 的成绩,在25级的P- 2号轨道上为P- 的P- 2 的P- 1 的精确度为25 的轨道上,在轨道上,运行的精确度为P- 2 级。