An oblivious subspace embedding (OSE), characterized by parameters $m,n,d,\epsilon,\delta$, is a random matrix $\Pi\in \mathbb{R}^{m\times n}$ such that for any $d$-dimensional subspace $T\subseteq \mathbb{R}^n$, $\Pr_\Pi[\forall x\in T, (1-\epsilon)\|x\|_2 \leq \|\Pi x\|_2\leq (1+\epsilon)\|x\|_2] \geq 1-\delta$. When an OSE has $1/(9\epsilon)$ nonzero entries in each column, we show it must hold that $m = \Omega(d^2/\epsilon^{1-O(\delta)})$, which is the first lower bound with multiplicative factors of $d^2$ and $1/\epsilon$, improving on the previous $\Omega(\epsilon^{O(\delta)}d^2)$ lower bound due to Li and Liu (PODS 2022).
翻译:以 $,n,d,\ epsilon,\ delta$为特征的隐蔽的子空间嵌入(OSE)是一个随机矩阵 $\ Pi\ in\ mathbb{R\\\\m\timen n} 美元,对于任何以美元为维的子空间,$T\subseteq\\mathb{R ⁇ }$,$\Pr\\pi[forall x\in T,(1-\\epsilon)x ⁇ 2\leq ⁇ pix ⁇ 2\\leq(1 ⁇ epsilon) ⁇ x ⁇ x ⁇ 2\\\\ geq q 1\ delta$。当一个 OESE有$ (\\\\\\ epsilon) 在每列中的非零条目时,我们必须显示$= \ omega (d\\\\\\\ epsilon\1-O(delta)}$,这是第一个低乘 $2美元和Liemega\\\\\ dexxxxxxxxxxxxxxxxxxxxxxxxx) 美元 和LixxLixxxxxxxxxxxxx